If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1n^2-2-4=77
We move all terms to the left:
1n^2-2-4-(77)=0
We add all the numbers together, and all the variables
n^2-83=0
a = 1; b = 0; c = -83;
Δ = b2-4ac
Δ = 02-4·1·(-83)
Δ = 332
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{332}=\sqrt{4*83}=\sqrt{4}*\sqrt{83}=2\sqrt{83}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{83}}{2*1}=\frac{0-2\sqrt{83}}{2} =-\frac{2\sqrt{83}}{2} =-\sqrt{83} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{83}}{2*1}=\frac{0+2\sqrt{83}}{2} =\frac{2\sqrt{83}}{2} =\sqrt{83} $
| 1n^-+2-4=77 | | (-2)*(-3)+a=-24 | | 2=10(8+5u) | | 6k-8k=-17.5 | | (4x+12)=48 | | 22x-5=31x×4x-69+7x | | 1n^2+2-4=7 | | 5(3x+-9)=2(6x+9) | | b*(-7)*(-4)=-56 | | c2=35 | | -5*a/(-10)*10=100 | | 3+7v=8(5-2v) | | 3(2x-3)+x(+x+36)=103 | | 3y-6=13 | | 1n^2+2-4=77 | | -8z+10+8z=10 | | (-2)+a-2=-7 | | 1x+16=24 | | 6v-24=12 | | 60=-7y+4 | | p+(-3p)=-16 | | -6h+7-2h=34 | | t+49=50 | | 21x-x-34=6x+2x-7x+4 | | -6h+7-2h=33 | | 4(r+5)=7-(-4r-13) | | 3x-x=-4x | | (6x+6)+(4x)=146 | | (-3)*y+3=6 | | -6x+5=8+6x | | (-45)/y=-5 | | y+39=13y+3 |